The lunar gravity differential field at the Earth's surface is known as the tide-generating force. This is the primary mechanism that drives tidal action and explains two equipotential tidal bulges, accounting for two daily high waters.The tidal force produced by a massive object (Moon, hereafter) on a small particle located on or in an extensive body (Earth, hereafter) is the vector difference between the gravitational force exerted by the Moon on the particle, and the gravitational force that would be exerted on the particle if it were located at the Earth's center of mass. The solar gravitational force on the Earth is on average 179 times stronger than the lunar, but because the Sun is on average 389 times farther from the Earth, its field gradient is weaker. The solar tidal force is 46% as large as the lunar. [28]
The ocean's surface is closely approximated by an equipotential surface, (ignoring ocean currents) commonly referred to as the geoid. Since the gravitational force is equal to the potential's gradient, there are no tangential forces on such a surface, and the ocean surface is thus in gravitational equilibrium. Now consider the effect of massive external bodies such as the Moon and Sun. These bodies have strong gravitational fields that diminish with distance in space and which act to alter the shape of an equipotential surface on the Earth. This deformation has a fixed spatial orientation relative to the influencing body. The Earth's rotation relative to this shape causes the daily tidal cycle. Gravitational forces follow an inverse-square law (force is inversely proportional to the square of the distance), but tidal forces are inversely proportional to the cube of the distance. The ocean surface moves because of the changing tidal equipotential, rising when the tidal potential is high, which occurs on the parts of the Earth nearest to and furthest from the Moon. When the tidal equipotential changes, the ocean surface is no longer aligned with it, so the apparent direction of the vertical shifts. The surface then experiences a down slope, in the direction that the equipotential has risen.
Tides are a function of gravity.
There is no mention of standing wave phenonmena with regard to forces that cause tides.
There is mention of standing waves in areas due to tidal and other currents interfering but this is dependant on localized features, and is not a global cause or effect.