0.01 > p(some god exist) > p(santa) > p(easter bunny) > 0.
Has this been peer reviewed?
by bohm 139 Replies latest jw friends
0.01 > p(some god exist) > p(santa) > p(easter bunny) > 0.
Has this been peer reviewed?
Essan: I am not trying to make a statement, or argue from "average-joe" wisdom. The above example is something i would stand by and defend under scrutiny from peers. It is my oppinion based on my training that the probability iceland will win the world cup is a well-defined concept, and that it is low but not zero.
Is it your oppinion that it is now low, or that it is not something that fall within the scope of probability theory?
I promise that i will stick to arguments that are valid scientifically to the best of my oppinion.
No my point was that we can
1) guess at what we personally feel may be probable, (non-scientific, ad-hoc, influenced by preference and bias etc)
2) properly calculate probability (scientific, with all that implies)
Now, if a well respected scientist speaks in a scientific context of the supposed high 'probability' or 'improbability' of something, which are we expected to think he is using. 1 or 2? Would it be appropriate for a scientist to inject (1) into scientific investigation or discussion? Would it be appropriate for them to do so without making it clear to others that this was merely a personal opinion? Would it be fraudulent to pass off 1 as if it were 2, to deceptively lend the gravitas of 2, to 1, or allow such to happen?
And the error becomes more serious when we move from discussing probability within simple systems, where it can be calculated fairly easily, to questions such as God's existence or nonexistence, which is impossible.
Unlike 'belief', 'probability' as you know is a scientific term and it's investigation a distinct scientific process. Therefore, irresponsible use of terms isn't really acceptable because it's misleading or, at worst, deceptive.
With regard to 'probability', as an Agnostic I'm not that interested in probability, to me if anything isn't or can't be fully known, it's an unknown. You either know or you don't. The rest is interesting speculation.
So, in the case of God, not only do we not know for sure, but we can't even really make an informed guess.
PS. We don't seem to be discussing atheism anymore LOL.
Essan: "Unlike 'belief', 'probability' as you know is a scientific term and it's investigation a distinct scientific field." I know, im in it. :-) .
Basically i dont understand your objection to my iceland example. It seem quite clear to me that the probability that iceland will win the world cup in 2022 is very low; i even gave estimates for it from two perspectives and both was quite low.
Look at this example:
You are a juror at a trial. A man is carried in. At your first day, you hear the following testimony:
"Blood was found on the scene. There is a 70% chance the blood is from the man under accusation"
Is it possible to talk about the probability he is guilty? Ie., is that a well-defined quantity to try to estimate? (i would think this is what we are asked to do as jurors)
What if more and more evidence is brought forth, does it then become possible to talk about that probability at some point?
Essan: Your statement:
if a scientist has not established an accurate numerical value of a probability, then he has not calculated probability (either because he didn't bother or because it can't be done) in which case he has no business referencing probability and all such claims of things being "almost certain", "highly probably" etc. are fraudulent.
Seem to make this question quite central. But we could also change focus back to the more interesting statement (1) I made in my post 1634 where we discussed the usage of the word "belive" and interlectual honesty. My question was in two parts; essentially:
Does it take a "leap of faith" to say: "I believe santa does not exist" and is that not scientific?
The way i usually use and understand the word "believe" would imply no. I dont think one is being unscientific when one say: "I believe santa does not exist" because the probability he exist is extremely low (and i claim only a very poor scientist could not justify that position ).
But i wonder what your oppinion is.
Bohm, the problem was not the example,
The problem was which approach to the example should be used by Scientists to justify their referring to something being "probable" or "improbable" or suchlike, and the fact that relatively simple systems aren't analogous to calculating the probability of God's existence. It was all there in my earlier posts. First you referenced Iceland's crappy team (not scientific) then you crunched the numbers, or gave an example of how doing so might proceed (scientific).
A guess or mere opinion, even an informed one, regarding what someone thinks is 'probable' isn't 'calculating probability'. It's irrelevant. It becomes more and more irrelevant and subject to error the more complex the system and the more than is unknown to the point that, when discussing God, it's totally worthless. You might get away with it when dealing with something as simple as a football team, because so much is in the realm of the known that an opinion may me reasonably close to the result given by actually calculating the probability. But when it comes to things like God - not a chance. And as we know, it's not possible to accurately calculate the probability of God's existence. So, a scientist can never actually be referencing scientific 'probability' when discussing God, only an unscientific opinion, a belief, which they should not be indulging in and certainly not when they dress it up in language which falsely implies scientific procedure and reliable data.
With that in mind, what do you object to in the following statement?
"if a scientist has not established an accurate numerical value of a probability, then he has not 'calculated probability' (either because he didn't bother or because it can't be done) in which case he has no business referencing probability and all such claims of things being "almost certain", "highly probably" etc. are fraudulent."
"Does it take a leap of faith to say 'I believe Santa does not exist'"
You already know the answer. Can you absolutely prove he doesn't? Yes or no. If no, then your belief is faith based. You could say "I don't believe he exists", perhaps, but it would still need qualifying so as not to mislead. Do you think it unlikely he exists? Is that what you mean by "believe"? Then say what you mean. Can you prove it is unlikely? If not, you have no business claiming it is unlikely, you should qualify that it's only a belief that it's unlikely.
You're taking this to an extreme and we are far from discussing atheism but the principles are absolute. It's about accuracy or inaccuracy. Full knowledge or belief and degrees of faith. If you truly consider accuracy to be a mark of good science then you are compelled to abide by such principles. Few do. It's scary to face how little we know or can know and science is full of fallible human beings, stuffed full of conditioning, bias, preferences, opinions and agendas, just as the world's religions are.
Bohm, what is the probability that we exist within an illusory "Matrix", some 'ancestor simulation', or suchlike?
What does it do to calculating probability when calculating probability might suggest 'realms' outside of the one in which the calculation is made and which are entirely unknown? How can calculations necessarily limited to the parameters of a possible simulation hope to accurately assess the probability of whatever else may exist outside of the simulation? If what may be outside the simulation created and has control over what is in it, how can we ever determine what may appear within the simulation?
What good is 'probability'?
Essan: Let me begin by your statement.
"if a scientist has not established an accurate numerical value of a probability, then he has not 'calculated probability' (either because he didn't bother or because it can't be done) in which case he has no business referencing probability and all such claims of things being "almost certain", "highly probably" etc. are fraudulent."
Well, first and foremost it is the term "accurate numerical value" and the context of the discussion, for example: But I am talking here about cases in which probability can be measured.
I assume we both mean that if we ask the scientist in question why he think the probability is low, he will give some argument to estimate that probability and why he think it is low. Essentially a beefed up version of what i did for Iceland. In other words, if your claim is that it is impossible to reference probabilities one cannot argue for, i completely agree but i dont assume that was what you meant ;-).
How i understand your point was that there was a "accurate numerical value" one has to be able to hit spot on to continue; the truth is that in practical situations, one can only make "ballpark estimates" with respect to that value, but that does not mean it does not exist or that we cannot use it to continue.
This is really nothing more than stating that a certain choice of model will lead to a certain conclusion. Lets return to the juror example: If i am a juror, and i have to evaluate his guilt based on evidence i resieve, i have to begin by stating the probability he is guilty to begin with, then combine that probability with the evidence, and arrive at some new probability: If its very close to 1, he is guilty.
But my original ballpark estimate is very difficult to make; For example, i can argue it is about 5*10^-5 (#murders in USA / # people in USA).
But thats very crude - for example, i have to factor in things like:
1) his sex
2) his age
3) his race
...
117) is the tatoo on his neck recent or old?
...
this will change my estimate of his a-priori guilt; its crucial i estimate this before i begin to consider the evidence, but in all practical sence i cannot claim to have calculated (estimated) the probability completely accurately, since there is allways more side information i can factor in. At some point, you got to shut up, say: "This is what im going to go with", and continue your calculation/juror delibration.