Here is some more info (from a secular source) on the complexities of photoreceptors and the chemical processes which occurr in then to generate vision. Its hard to imagine these structures evolving once, let alone a similar photoreceptor evolving twice.
The Retina
The retina contains the photoreceptor cells and their associated interneurones and sensory neurones. They are arranged as shown in this diagram:
![]()
A surprising feature of the retina is that it is back-to-front (inverted). The photoreceptor cells are at the back of the retina, and the light has to pass through several layers of neurones to reach them. This is due to the evolutionary history of the eye, and in fact doesnt matter very much as the neurones are small and transparent. There are two kinds of photoreceptor cells in human eyes: rods and cones, and we shall look at the difference between these shortly. These rods and cones form synapses with special interneurones called bipolar neurones, which in turn synapse with sensory neurones called ganglion cells. The axons of these ganglion cells cover the inner surface of the retina and eventually form the optic nerve (containing about a million axons) that leads to the brain.
Visual Transduction
Visual transduction
is the process by which light initiates a nerve impulse. The structure of a rod cell is:
![]()
The detection of light is carried out on the membrane disks in the outer segment. These disks contain thousands of molecules of rhodopsin, the photoreceptor molecule. Rhodopsin consists of a membrane-bound protein called opsin and a covalently-bound prosthetic group called retinal. Retinal is made from vitamin A, and a dietary deficiency in this vitamin causes night-blindness (poor vision in dim light). Retinal is the light-sensitive part, and it can exists in 2 forms: a cis form and a trans form:
![]()
In the dark retinal is in the cis form, but when it absorbs a photon of light it quickly switches to the trans form. This changes its shape and therefore the shape of the opsin protein as well. This process is called bleaching. The reverse reaction (trans to cis retinal) requires an enzyme reaction and is very slow, taking a few minutes. This explains why you are initially blind when you walk from sunlight to a dark room: in the light almost all your retinal was in the trans form, and it takes some time to form enough cis retinal to respond to the light indoors.
The final result of the bleaching of the rhodopsin in a rod cell is a nerve impulse through a sensory neurone in the optic nerve to the brain. However the details of the process are complicated and unexpected. Rod cell membranes contain a special sodium channel that is controlled by rhodopsin. Rhodopsin with cis retinal opens it and rhodopsin with trans retinal closes it. This means in the dark the channel is open, allowing sodium ions to flow in and causing the rod cell to be depolarised. This in turn means that rod cells release neurotransmitter in the dark. However the synapse with the bipolar cell is an inhibitory synapse, so the neurotransmitter stops the bipolar cell making a nerve impulse. In the light everything is reversed, and the bipolar cell is depolarised and forms a nerve impulse, which is passed to the ganglion cell and to the brain. Fortunately you dont have to remember this, but you should be able to understand it.
![]()