Fossilized intermediates should appear in the correct general chronological order based on the standard tree. Any phylogenetic tree predicts a relative chronological order of the evolution of hypothetical common ancestors and intermediates between these ancestors. For instance, in our current example, the reptile-mammal common ancestor (B) and intermediates should be older than the reptile-bird common ancestor (A) and intermediates.
Note, however, that there is some "play" within the temporal constraints demanded by any phylogeny, for two primary reasons: (1) the statistical confidence (or conversely, the error) associated with a phylogeny and its specific internal branches, and (2) the inherent resolution of the fossil record (ultimately stemming from the vagaries of the fossilization process). As mentioned earlier, most phylogenetic trees have some branches with high confidence, because they are well-supported by the data, and other branches in which we have less confidence, because they are statistically less significant and poorly supported by the data. See also the caveats associated with phylogenetic analysis.
When evaluating the geological order of fossils, remember that once a transitional species appears there is no reason why it must become extinct and be replaced. For instance, some organisms have undergone little change in as much as 100 to 200 million years in rare cases. Some familiar examples are the "living fossils", such as the coelacanth, which has persisted for approximately 80 million years; the bat, which has not changed much in the past 50 million years; and even the modern tree squirrel, which has not changed in 35 million years. In fact, paleontological studies indicate the average longevity of 21 living families of vertebrates is approximately 70 million years (Carroll 1997, p. 167).
Furthermore, the fossil record is demonstrably incomplete; species appear in the fossil record, then disappear, then reappear later. An exceptional instance is the coelacanth, which last appeared in the fossil record 80 million years ago, yet it is alive today. During the Cretaceous (a critical time in bird evolution), there is a 50 million-year gap in the diplodocoidean record, greater than a 40 million-year gap in the pachycephalosaurian record, greater than a 20 million-year gap in the trodontidiae, and about a 15 million-year gap in the oviraptosaurian fossil record (both of these last two orders of dinosaurs are maniraptoran coelurosaurian theropods, which figure significantly in the evolution of birds). During the Jurassic, there is a 40 million-year gap in the fossil record of the heterodontosauridae (Sereno 1999). Most organisms do not fossilize, and there is no reason why a representative of some species must be found in the fossil record. As every graduate student in scientific research knows (or eventually learns, perhaps the hard way), arguments based upon negative evidence are very weak scientific arguments, especially in the absence of proper positive controls. Thus, based on the fossil remains of modern species and the known gaps in the current paleontological records of extinct species, the observation of transitional species "out of order" by 40 million years should be fairly common. This degree of "play" in the fossil record is actually rather minor, considering that the fossil record of life spans between 2 to 3.8 billion years and that of multicellular organisms encompasses a total of ~660 million years. An uncertainty of 40 million years is equivalent to about a 1% or 6% relative error, respectively—rather small overall.
The reptile-bird intermediates mentioned above date from the Upper Jurassic and Lower Cretaceous (about 150 million years ago), whereas pelycosauria and therapsida (reptile-mammal intermediates) are older and date from the Carboniferous and the Permian (about 250 to 350 million years ago, see the Geological Time Scale). This is precisely what should be observed if the fossil record matches the standard phylogenetic tree.
The most scientifically rigorous method of confirming this prediction is to demonstrate a positive corellation between phylogeny and stratigraphy, i.e. a positive corellation between the order of taxa in a phylogenetic tree and the geological order in which those taxa first appear and last appear (whether for living or extinct intermediates). For instance, within the error inherent in the fossil record, prokaryotes should appear first, followed by simple multicellular animals like sponges and starfish, then lampreys, fish, amphibians, reptiles, mammals, etc., as shown in Figure 1. Contrary to the erroneous (and unreferenced) opinions of some anti-evolutionists (e.g. Wise 1994, p. 225-226), studies from the past ten years addressing this very issue have confirmed that there is indeed a positive corellation between phylogeny and stratigraphy, with statistical significance (Benton 1998; Benton and Hitchin 1996; Benton and Hitchin 1997; Benton et al. 1999; Benton et al. 2000; Benton and Storrs 1994; Clyde and Fisher 1997; Hitchin and Benton 1997; Huelsenbeck 1994; Norell and Novacek 1992a; Norell and Novacek 1992b; Wills 1999). Using three different measures of phylogeny-stratigraphy correlation [the RCI, GER, and SCI (Ghosts 2.4 software, Wills 1999)], a high positive correlation was found between the standard phylogenetic tree portrayed in Figure 1 and the stratigraphic range of the same taxa, with very high statistical significance (P < 0.0001) (this work, Ghosts input file available upon request).
As another specific example, an early analysis published in Science by Mark Norell and Michael Novacek (Norell and Novacek 1992b) examined 24 different taxa of vertebrates (teleosts, amniotes, reptiles, synapsids, diapsids, lepidosaurs, squamates, two orders of dinosaurs, two orders of hadrosaurs, pachycephalosaurs, higher mammals, primates, rodents, ungulates, artiodactyls, ruminants, elephantiformes, brontotheres, tapiroids, chalicotheres, Chalicotheriinae, and equids). For each taxa, the phylogenetic position of known fossils was compared with the stratigraphic position of the same fossils. A positive correlation was found for all of the 24 taxa, 18 of which were statistically significant. Note that the correlation theoretically could have been negative. A statistically significant negative correlation would indicate that, in general, organisms rooted deeply in the phylogeny are found in more recent strata—a strong macroevolutionary inconsistency. However, no negative correlations were observed.
As a third example, Michael Benton and Rebecca Hitchin published a more recent, greatly expanded, and detailed stratigraphic analysis of 384 published cladograms of various multicellular organisms (Benton and Hitchin 1997). Using the three measures of congruence between the fossil record and phylogeny mentioned above (the RCI, GER, and SCI), these researchers observed values "skewed so far from a normal distribution [i.e. randomness] that they provide evidence for strong congruence of the two datasets [fossils and cladograms]." Furthermore, Benton and Hitchin's analysis was extremely conservative, since they made no effort to exclude cladograms with poor resolution or to exclude cladograms with very small numbers of taxa. Including both of these types of cladograms will add confounding random elements to the analysis and will decrease the apparent concordance between stratigraphy and cladograms. Even so, the results were overall extremely statistically significant (P < 0.0005). As the authors comment in their discussion:
"... the RCI and SCI metrics showed impressive left-skewing; the majority of cladograms tested show good congruence between cladistic and stratigraphic information. Cladists and stratigraphers may breathe easy: the cladistic method appears, on the whole, to be finding phylogenies that may be close to the true phylogeny of life, and the sequence of fossils in the rocks is not misleading. ... it would be hard to explain why the independent evidence of the stratigraphic occurrence of fossils and the patterns of cladograms should show such striking levels of congruence if the fossil record and the cladistic method were hopelessly misleading." (Benton and Hitchin 1997, p. 889) |
Additionally, if the correlation between phylogeny and stratigraphy is due to common descent, we would expect the correlation to improve over longer geological time frames (since the relative error associated with the fossil record decreases). This is in fact observed (Benton et al. 1999). We also would expect the correlation to improve, not to get worse, as more fossils are discovered, and this has also been observed (Benton and Storrs 1994).